

Cp

 $Cp^* = C_5Me_5$

From an Al₄-Cluster to Al⁺ Complexes: Lessons on Metalloid Clustering **Philipp Dabringhaus and Ingo Krossing***

*Institute of Inorganic and Analytical Chemistry, University of Freiburg, Germany; krossing@uni-freiburg.de

Introduction

Already in 1991, the synthesis of the first low-valent aluminum complex [(AICp*)₄] was reported by Schnöckel (left).[1] Since then, the low-valent AI chemistry has flourished and expanded to anionic AI(I) complexes and multi-bonded systems, showing high activity in small molecule activation.[2] Yet, an accessible cationic, low-valent aluminum compound is hitherto unknown. Low-valent main-group metal-cations are interesting synthetic goals due to the stabilization of the lower oxidation states by the cationic charge, making them promising candidates for reversible redox-chemistry. Previous attempts aiming for the isolation of a low-valent AI cation focused on the oxidation of aluminum metal with a large variety of newly developed oxidant salts.[3] However, successful oxidation could only be observed upon addition of hard ligands (e.g. MeCN) and yielded Al(III) cations. Here, we present the synthesis of the complex salt $[AI(AICp^*)_3][AI(OR^F)_4](R^F = C(CF_3)_3)$ starting from $[(AICp^*)_4].[4]$

An Accessible Low-Valent Al Cation

The complex salt [AI(AICp*)₃][*pf*] was synthesized on a gram-scale in a simple metathesis procedure. The molecular structure of the cation displays an unique AI⁺ atom coordinated by three AICp^{*} units. Indicating an ambiphilic reactivity, dimerization to [AI₂(AICp^{*})₆]²⁺ dications is

Elusive [Al₂(AlCp*)₆]²⁺ dimers in solid state... [^]166.30(5) ° 134.65(5) 2.838(2) Å 3.005(2) Å

...and in **1,2-DFB-solution** at high conc. and/or low temp.

[(tmeda)Al(AlCp*)₃**]**[*pf*]

[(cdp)Al(AlCp*)₃**]**[*pf*]

 $[(dmap)_3Al(AlCp^*)_3][pf]$

... Re-Clustering upon Addition of Lewis Bases

Addition of Lewis bases results in reformation of the tetrahedral Al₄⁺ clusters. While the bond lengths can be fine-tuned depending on the donor-strength of the Lewis bases, a bond-length inversion is observed in the (dmap)₃-substituted cluster which readily decomposes in solution and potentially acts as synthon for an elusive $[(dmap)_3AI]^+$

Table 1: ²⁷AI NMR shifts and selected bond lengths for the cationic, low-valent AI-

Compound	δ(²⁷ AI) Al _{Cp*} [ppm]	δ(²⁷ AI) AI+ [ppm]	d(Al⁺–Al _{Cp*}) _{av.} [Å]	d(Al _{Cp*} –Al _{Cp*}) _{av.} [Å]
[AI(AICp*) ₃][<i>pf</i>]	-41.0	-274.3	2.546(2)	3.044(2)
[(tmeda)AI(AICp*) ₃][<i>pf</i>]	-64.8	47.6	2.695(1)	2.782(1)
[(cdp)Al(AlCp*) ₃][<i>pf</i>]	-59.2	invisible	2.662(1)	2.773(1)
[(AICp*) ₄]	-80.7	-	_	2.769(5)[3]
[(dmap) ₃ Al(AlCp*) ₃][<i>pf</i>]	-83.3	invisible	2.802(1)	2.670(1)

EDA-NOCV

Energy Decomposition Analysis coupled with Natural Orbitals of Chemical Valence (EDA-NOCV) breaks the bonding between two fragments down into the contributing interaction energies. $\Delta \rho_{(1)/(2)}$ plots display the difference of electron density upon bond formation (charge flows from yellow to purple).

Major Orbital Interaction

Fragment Orbitals

In $[Al(AlCp^*)_3]^+$, the major orbital interaction is the donation of electron density from the AICp* units into empty *p*-orbitals at AI⁺. The bonding situation changes in the dmapsubstituted cluster, where the major orbital interaction represents the delocalisation of the AI⁺ lone-pair into the $(AICp^*)_3$ fragment.

bp86-d3bj/def2-tzvp//bp86-d3bj/def2-svp (isovalue 0.002 for $\Delta\rho$, 0.05 for FMOs)

Literature: [1] C. Dohmeier, C. Robl, M. Tacke, H. Schnöckel, Angew. Chem. Int. Ed. 1991, 30, 564-565. [2] a) K. Hobson, C. J. Carmalt, C. Bakewell, Chem. Sci. 2020, 11, 6942-6956. b) J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 1702–1713. [3] P. Dabringhaus, A. Barthélemy, I. Krossing, Z. Anorg. Allg. Chem. 2021, 18, 1660-1673. [4] P. Dabringhaus, J. Willrett, I. Krossing, Nat. Chem. 2022, DOI: 10.1038/s41557-022-01000-4.

